Nanostructured ultrafast silicon-tip optical field-emitter arrays.

نویسندگان

  • Michael E Swanwick
  • Phillip D Keathley
  • Arya Fallahi
  • Peter R Krogen
  • Guillaume Laurent
  • Jeffrey Moses
  • Franz X Kärtner
  • Luis F Velásquez-García
چکیده

Femtosecond ultrabright electron sources with spatially structured emission are an enabling technology for free-electron lasers, compact coherent X-ray sources, electron diffractive imaging, and attosecond science. In this work, we report the design, modeling, fabrication, and experimental characterization of a novel ultrafast optical field emission cathode comprised of a large (>100,000 tips), dense (4.6 million tips·cm(-2)), and highly uniform (<1 nm tip radius deviation) array of nanosharp high-aspect-ratio silicon columns. Such field emitters offer an attractive alternative to UV photocathodes while providing a direct means of structuring the emitted electron beam. Detailed measurements and simulations show pC electron bunches can be generated in the multiphoton and tunneling regime within a single optical cycle, enabling significant advances in electron diffractive imaging and coherent X-ray sources on a subfemtosecond time scale, not possible before. At high charge emission yields, a slow rollover in charge is explained as a combination of the onset of tunneling emission and the formation of a virtual cathode.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiplexing and scaling-down of nanostructured photon-triggered silicon field emitter arrays for maximum total electron yield.

Femtosecond ultrabright cathodes with spatially structured emission are a critical technology for applications such as free-electron lasers, tabletop coherent x-ray sources, and ultrafast imaging. In this work, the optimization of the total electron yield of ultrafast photon-triggered field emission cathodes composed of arrays of nanosharp, high-aspect-ratio, single-crystal silicon pillars is e...

متن کامل

Highly scaled silicon field emitter arrays with integrated silicon nanowire current limiters

Field emitter arrays (FEAs) are a promising class of cold electron sources with applications in RF amplifiers, terahertz sources, lithography, imaging, and displays. FEAs are yet to achieve widely implemented because of serious challenges which have limited their viability in systems that require advanced electron sources. We identified four major challenges that posed significant barriers to t...

متن کامل

Field Emission Characterisation of Silicon Tip Arrays Coated with Gan and Diamond Nanoparticle Cluster

Wide band gap materials show promise for applications in coating of field emission tips. Recently nanocrystalline hexagonal GaN crystallites as small as 5 nm average diameter have been formed using reactive laser ablation of gallium metal in a nitrogenating ambient. In this paper we have investigated the performance of ungated emitter. Silicon tip arrays coated by dielectrophoresis of gallium n...

متن کامل

Effect of gases on the field emission properties of ultrananocrystalline diamond-coated silicon field emitter arrays

We performed studies of electron emission from ultrananocrystalline diamond ~UNCD!-coated, ungated silicon field emitters as a function of in situ exposure to various gases during current versus voltage and current versus time measurements. The emitter arrays were fabricated by a subtractive tip fabrication process and coated with UNCD films using microwave plasma chemical vapor deposition with...

متن کامل

A Graphene-Coated Mo Tip Array for Highly-Efficient Nanostructured Electron Field Emitters

An efficient electron field emitter based on a monolayer graphene coated well aligned Mo tip array has been designed, fabricated, and evaluated. The advantages of this hybrid nanostructure film morphology are explored and discussed. Efficient and stable field emissions with low turn-on fields have been observed with the new devices. It is further found that the combination of graphene and Mo ti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nano letters

دوره 14 9  شماره 

صفحات  -

تاریخ انتشار 2014